文章原名是《揭秘大數據玩家eBay:猜出你的購買慾》,內容主要是涉及eBay對於數據的應用方向。
- f9 g1 ?& _0 e6 M9 K4 A7 S) J2 t1 D其實,如何尋找各平台數據、如何把數據用在自己的店舖成長上,感覺一直是相關跨境電商培訓的必有部分。
( E2 {1 s6 |/ u/ m- v0 `5 Q畢竟,尋找一顆鑽石進行打磨,與隨手找到一顆石頭打磨,即使一樣用心,結果還是天差地別的。+ r1 M7 Y$ N( z
很多平台都有類似數據公佈,希望這篇文章能提高大家對數據的認識,讓自己先人一步找到藍海。
6 Z4 m5 b' F# s* N7 F3 i: v
! U0 ]7 S6 R: B5 @% K# Y: X' l 在網絡世界,數據就是金錢。作為全球最大的拍賣網站,eBay對這一點深有體會。眼下,eBay對各種在線數據的分析無所不至,就像在每個顧客前面安裝了攝像頭一般。毫無疑問,eBay擁有的數據量是驚人的。其每天都要處理100PB的數據,其中包括50TB的機器數據。可以說,eBay每天都面臨著天文數字般的大數據挑戰。) h7 J' }7 O1 o# G) @. _3 T
" S0 l( z p$ q2 V
3 J( `8 w1 H/ m( g5 w1 B% B
! r f3 y5 v1 V2 p K& r; d+ I 早在2006年,eBay就成立了大數據分析平台。為了準確分析用戶的購物行為,eBay定義了成百上千種類型的數據,並以此對顧客的行為進行跟蹤分析。然而,這同時也為eBay帶來了新的挑戰。要知道,公司的數據量多到難以想像,沒有人能分析消化這麼多的數據,也沒有人能基於所有數據建立起模型。事實上,eBay真正應用到的,只是其收集的數據中的一小部分。「剩餘的數據,eBay或是將其丟棄,或是將其存儲起來。因為說不定哪天,科技實現了突破,這些數據就會變得有用。」eBay大中華區CEO林奕彰指出。
& t, f% U$ q1 c5 R 那麼目前,eBay是如何利用這些數據,來促進業務創新和利潤增長的呢?
& N6 Q2 _" m2 f/ r$ j U/ F2 f( U: J/ F! o. S4 T* ]
為用戶「畫像」
1 k7 A- m( a$ x4 S: |
/ @" e& R! F) r$ Z; n eBay擁有近2億的用戶,網站的商品清單項目則有3萬多類。在平台的日常交易中,eBay幾乎每秒都要處理數千美元。而這些交易數據,其實只是eBay全站數據信息總量的「冰山一角」。9 G/ G: f; B" U0 c4 Q
& S! R, y8 W, ]: I3 L: u 基於大數據分析,eBay每天要回答的問題有很多,比如,「昨天最熱門的搜索商品是什麼?」而即便是這樣的簡單問題,都需要涉及處理五十億的頁面瀏覽量。從這個角度看,任何一個基本的業務問題,對公司來說都是一個相當巨大的問題。
, i# A6 G! A( j# a# D( A1 k! j% l" z2 a
就eBay如何利用大數據來增加在線交易,林奕彰舉了一個典型的例子。譬如,一位年輕的女性早上10點在星巴克瀏覽eBay網站,eBay應該推送給她什麼樣的商品呢?
- A( _* s4 J# J! d: l y$ g @: @; n; E& _' J) }& ? F6 W8 Q
「就這幾個信息點,我們其實已經做了不少研究。」林奕彰說,「事實上,用戶早晨10點、中午12點,或是晚上7點,她瀏覽的商品是不同的;在餐廳或是在家裡,同樣會對瀏覽和搜索產生影響;此外,還有用戶的年齡、當時的天氣等等,都會對購物產生影響。eBay要做的,就是學習不同情景下的不同購物模式,並推送給用戶最想要的商品。」
; o% T, B; G2 N; a1 T5 C# J5 Q" w! \0 \' l7 k
據悉,eBay可以從用戶以往的瀏覽記錄裡「猜」她想要什麼樣的商品,也可以從設定的成百上千種情景模型中計算出用戶可能的需求;或是對照另一位有著相似特點的女性用戶,看她當時買過什麼樣的商品,從而推斷出這位用戶潛在的需求。在綜合各種考量因素後,eBay的後台需要在短短幾秒內將商品頁面推送給用戶。這意味著,eBay的系統需要有非常快的運算速度。
/ R q' I8 q' a' M. M- o, y
+ W% O, c4 C& O' j 這種運算模型,有相當一部分人為的因素。比如,機器可以搜集用戶的上萬個數據,但eBay的工程師可以定義其中的100個數據為有效數據,而模型則建立在這些有效數據之上。此外,當計算機自動「學習」分析各種數據形成的趨勢時,eBay需要將機器學習的邏輯設定在與商品交易相關的行為上。
# c7 [7 W P2 ~9 e: z7 D7 y, p) J! I8 B6 h5 M
除了通過大數據為用戶「畫像」而向其推送有針對性的商品,eBay此前還嘗試利用大數據進行搜索引擎的優化。1 ] H: x2 m! U) p2 J
8 r; G2 l- ^- ^2 _ 具體說來,eBay可以把握用戶的行為模式,使搜索引擎更加「直覺化」。如果時間倒退幾年,用戶在使用eBay的搜索引擎時,會發現它只能理解字面的意思,並按照字面意思尋找。很多時候,搜索引擎並不能理解用戶的真實意圖。但現在,eBay正試著改變或重寫用戶的搜索請求,增加同義詞或替換語句,從而給出更相關性的內容,並由此增加在線交易量。而這背後,統統離不開大數據的支持。( D. N! b3 n% n9 [. a
( R% n1 M& X) }9 d
為商家提供「情報」
/ i3 O, h/ p. G; C+ p. d1 n' r* G6 E- j. t% M
基於用戶購物的數據,eBay同樣會給商家提供各式各樣的「情報」。比如,eBay會告訴製造商用戶正在網上搜索什麼商品,或是各種出口行業的數據,製造商會立刻對此做出反應。3 ~' @8 @- B+ Y. Q7 A1 g
( E, Q; p" ~" o0 t) }6 T: i5 ? Y
很多時候,eBay會根據自身或其他電商網站的交易情況,向商家建議其應該銷售的品類。「這也是eBay大中華區正在做的工作,」林奕彰稱,「比如,一個中國的商家希望將產品賣到澳洲,我們通過數據分析可以告訴他,他一個約可以賣出多少產品,定價應該在什麼範圍內,市面上還有多少商家在賣同樣的產品,他的市場佔有率大概是多少。」
- e# K2 D0 S7 ^& t& L, L5 Y+ z; v+ V
在此基礎上,eBay還試圖算出商家的補貨頻率。事實上,海外倉儲是商家非常頭痛的問題,一旦計算失誤,便可能造成庫存積壓或缺貨。而在eBay,一旦用戶下單後發現商家缺貨,將是非常嚴重的問題。這種情況下,eBay可以通過過往的數據分析,得出商家第一批貨的大概銷量,以及按照過去銷貨的速度什麼時候應該補貨,物流的時間又是多久。通過這些數據的計算,eBay可以測算出商家補貨的邏輯。" K; e! c/ V) ?, `
3 j6 j" X6 F# p' o) y I; a 這些數據分析,對於商家開拓新的銷售品類非常管用。因為通常情況下,商家需要四五個月,才能摸清楚一種貨物的淡旺季銷量,及其在各個地區的受歡迎程度。
9 z- _9 h0 d1 P( g% u3 c5 f% x. {' W+ ]* J/ w$ p$ s
當然,eBay所做的只是為商家提供各種潛在的商機,至於賣家是否願意投入生產,或能否找到合適的供應商進貨,仍需要他們自己去完成。很多時候,eBay推薦商家銷售200個新品類,而最終商家只能找到50種新產品的供應商。
4 j, A6 q" L( l8 j0 f
2 V6 W" K1 Q3 G- S 除此之外,憑借平台上產生的各種信息,eBay還可以扮演「品管(品質管理)」的角色。舉例來說,一個賣家要在eBay上賣1000個產品,當它賣到50個產品的時候,有5個產品出了問題;賣到200個產品的時候,有20個產品出了問題;賣到400個產品的時候,有40個產品出現質量問題,以此類推。而eBay要做的,就是在其早期出現問題的時候,就及時提醒賣家。5 ^/ X \+ v$ [
6 V6 W0 i+ R6 L [! K8 } 進一步說,當賣家賣掉10個、20個產品的時候,eBay就要根據退貨率、買家評論等把可能的問題檢測出來。與此同時,eBay會提醒賣家,讓其監督供應商改進品質,或選擇將商品下架,或是修改物品的描述。
- I; T. Z' u) {! D2 A7 J6 o7 U# u) {( h: u) w" [
在理想狀態下,這種品管系統會形成一個大數據的循環,並幫助賣家減少退貨,銷售更多的商品。假如賣家在收到這樣的通知後依舊我行我素,eBay就會認為這樣的賣家並不重視品管,到了一定階段,eBay會對其實施交易「配額」,限制其交易量。( U, y& ]9 [) f# O
/ W2 s( a8 k5 }/ E 「品管的難點在於,我需要通過數據模型在賣家交易量很少的時候就發現問題。這種早期預測涉及複雜的運算。」林奕彰表示,「一旦交易量大了,賣家自己也會統計退貨率,之前的損失也就無可挽回。」
- D$ l( R/ Z# v4 E8 L5 r3 }- L; N0 H/ \% K, J
試錯與挑戰: d6 W0 y- B' ]% R
+ F; x y" N% [9 }8 P' H9 \ 和其他在線交易平台一樣,eBay對假貨亦十分敏感。眼下,公司試圖通過大數據技術,讓系統「智能」地識別出假貨。: v$ b" S5 k' E; [9 E7 p
/ g; C5 G, l7 q
實際上,「網絡打假」工作並不容易。要知道,假貨常常以各種形態出現在網絡上,且屢禁不止。以Rolex為例,假貨商家可能在單詞中增加一個空格,也可能將其中兩個字母互換位置,甚至名稱裡根本不出現Rolex,只是圖片展示出Rolex手錶的樣子。eBay上有如此多的品牌,自然有形形色色的假貨充斥其中。這種情況下,單是靠在商品名稱或描述裡抓關鍵詞,根本抓不住假貨。
) f2 S$ V* |$ v; J1 p$ }$ A# \ F! f; C7 a4 R! `
而eBay眼下做的,就是通過數據分析建立起一種模型或規則,假如商家的交易符合這種規則或特徵,便有可能是在賣假貨。
2 T: F1 h! {! M4 Q6 g/ o
* h+ P3 k2 _" F+ M. D0 z 打個比方,當一個賣家的商品賣的很便宜,賣得很快,但後面的抱怨和退貨很多,系統就會把這個「可疑」的模式識別出來,然後再由工作人員去判斷,這個賣家是否在賣假貨。換言之,「即便數據的量再大,賣假貨的人都有相對固定的模式。」林奕彰稱。而通過這種方式,eBay有效地鑒別出不少假貨商家。
+ f( u* C7 h' m) B( x2 b% v. [6 \2 f2 p: g( X9 C
不過,林奕彰並不諱言,這種大數據分析方法亦有其弊端。「就假貨問題來說,這種方式只能在事後將問題查出來,而無法事先預測。」他表示,「這不是那麼容易解決的問題,因為無論用什麼樣的模型去套,假貨交易總是能先騙你一陣子。」
% o H; V1 }' e F7 B" [( d8 g
& C8 b' }1 o1 y; L7 { 除了分析的滯後性,eBay的大數據挑戰還體現在龐大的數據處理上。儘管企業數據倉庫為查詢提供了巨大性能,但它仍無法滿足eBay存儲和靈活處理的需要。要知道,這些系統的造價相當昂貴,當eBay每天增加50TB的數據時,其成本是相當高昂的。
* E0 C( j: G6 [6 H( \. m C4 ~, n
9 K) b) K$ k; @4 a 在此基礎上,eBay收集的相當一部分數據,在目前看來是無用的數據。畢竟,數據採集得越多,變量越多,而由此帶來的「數據噪音」也越多,模型越失真。從這個角度看,eBay要做的是記錄那些有意義的數據,並銷毀那些不需要的信息。問題在於,eBay要分析的85%的問題都是新的或未知的,「eBay並不知道哪些信息未來或許會有用,」林奕彰坦言,「那些現在看起來無效的數據,明後年可能就會隨著科技進步被消化,我們現在只能先把這些數據儲存起來。」
+ Y: |, v f+ `, q [2 s
; a4 `: g( Z+ q* E+ H" G8 S! w! \ 但另一廂,假如將所有信息都儲存起來,那麼eBay每個月都會新增數以億計的數據信息。在如此浩瀚的數據海洋中,分析工作根本無從下手。因此對eBay來說,這是一個必須平衡的難題。
! w& P7 F& _1 T& W
% h7 H- M, ]' L, d! v 需要指出的是,eBay當下的分析模型也還不夠完美。無論是「猜」用戶,還是分析商家在eBay上的生意,eBay猜錯的情況非常非常多。對於這一點,林奕彰舉了信用卡的例子。在他看來,「銀行其實是運用大數據最厲害的,但無論風控模型怎麼完美,全球依然有2%左右的信用卡賠率。」況且,eBay用的並不是成熟機構認證過的模型,很多時候要靠自己去猜,那麼誤差也就不足為奇。
+ l% l9 l5 ~* h9 I- @——文章轉自「21世紀經濟報道」,作者文亮。
9 V1 x' H7 ?* J
+ s: X5 a) p+ k( X7 M4 z最後提一句,雖然數據很重要,但如果您不是天秤座,也不要把過多的精力放在這上邊,畢竟,想完了並去做了,才知道結果對不對,願大家好運。
6 A: I7 ]3 X! ^- n) ]# h0 l+ j, o' Q; L) w7 \; R
|